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ABSTRACT 
 
A critical issue that affects engineers trying to assess the structural 
integrity of various infrastructure, such as metal rods or acoustic 
ducts, is the challenge of detecting internal fractures (defects). 
Engineers typically rely on audible and visual inspection to detect 
these anomalies, as destructive testing is impractical. This study 
proposes a robust and non-invasive strategy to characterize such 
defects using only a small set of minimal measurements. 
 
Assuming a one-dimensional model, we make use of the 
continuous one-dimensional wave equation to model these physical 
phenomena and then employ specialized mathematical analysis 
tools (the Laplace transform and optimization) to introduce our 
defect characterization ideas. In particular, we will focus on the 
case of a long rod which is homogeneous throughout except in a 
small area where a defect in its Young’s modulus is present. We 
will first demonstrate how the problem is equivalent to a spring-
mass vibrational system. Afterwards, we show how our imaging 
strategy makes use of the Laplace domain analytic map between 
the characteristics of the respective defect and the measurement 
data. 
 
More explicitly, we will utilize MATLAB to generate synthetic 
data as a computational surrogate for actual physical measurements 
in several scenarios with one defect of arbitrary location and 
stiffness. Subsequently, we will use this data along with our 
analytically developed map (between defect characteristics and 
measurements) to construct a residual function which, once 
optimized, will reveal the location and magnitude of the stiffness 
defect. 
 

INTRODUCTION 
 
Maintaining the integrity of infrastructure, such as bridges, 
drainage, and aerospace components, relies on the ability to 
identify hidden defects using non-destructive methods. Current 
non-destructive evaluation (NDE) techniques employ various 
forms of vibrational analysis due to their cost-effectiveness and 
reliability (see for instance Cawley and Adams 1979, Shifrin 2017, 
Zhang et al 2018, Peng et al 2022, Zou et al 2000). Specifically, 
many methods employ one-dimensional spring-mass analogues 
and wave equation models. These solutions are notable for their 
intuitive physical representation, analytical versatility (resulting 
from the Laplace transform), and especially their straightforward 
implementation in various numerical software, such as MATLAB. 
In biomechanics and computer graphics, spring-mass networks can 
simulate soft-tissue deformation and cloth dynamics in real-time, 
sacrificing system continuity for computational speed and 
robustness (Dimarogonas 1996). Moreover, acoustic metamaterials 
use one-dimensional (1D) spring-mass chains to block specific 
sound frequencies, thus creating an acoustically manipulable 
system (Palacz and Krawczuk 2002). Even vehicle and vibrational 
suspension systems employ a discrete set of springs and masses to 
identify and isolate harmful fluctuations arising from dynamic 
loads (Dilena and Morassi 2009). 
 
An emerging area of NDE research focuses on treating internal 
cracks, or defects, as an extra spring. When measuring certain 
values of such systems, the spring associated with the crack 
perturbs natural frequencies, thus shifting the poles of a system’s 
Laplace- domain output (Rubio et al 2015). Certain studies have 
already demonstrated that employing just two low-frequency 
measurements can be used to detect a single defect through a 
singular formula (Cawley and Adams 1979). Recently, works use 
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guided-wave Bayesian methods (Zeng et al 2023) and particle-
swarm optimizers (Grebla et al 2023) to detect multiple and/or 
nonlinear defects. 
 
On the other hand, many methods rely on continuous and precise 
Laplace-domain data, depend on closed-form inversion (valid for 
one or two defects), or struggle to generate an inverse map with 
boundary measurements and defect parameters. In reality, sensors 
may only monitor discrete time-series data, which is plagued by 
noise, and cracks can occur at arbitrary depths with varying 
magnitudes. As a result, the challenge of creating a data- driven 
imaging strategy that reliably recovers the location and size of a 
single defect from minimal, easily measurable data, while 
considering noise, remains unsolved. 
 
Despite these advances, one can note that existing approaches face 
practical limitations, especially when they are applied to cases 
involving noisy boundary measurements. 
 
In this work, we study the inverse problem of locating and 
quantifying a localized stiffness defect in a one–dimensional elastic 
rod using only a single endpoint displacement trace. The forward 
model is the standard 1D longitudinal wave equation discretized by 
a lumped spring–mass chain (e.g., in our particular numerical 
setup, length 𝐿	 = 	1  meter, 𝑁	 = 	100  nodes, ∆𝑥	 = !

"
	 ). The 

inverse task is to recover the index 𝑗 and the local spring constant 
𝑘∗ of a single anomalous element from noisy measurements of the 
left-end displacement 𝑢$(𝑡)  produced by an impulsive initial 
velocity. 
 
Our numerical results show the inversion recovers the defect 
location exactly (to the discretization cell) and recovers 𝑘∗  with 
relative errors ≲ 0.1% under realistic Gaussian measurement noise 
up to 𝜎	 = 	10%&  m. The discrete contrast 𝑘∗  maps directly to a 
continuum Young’s modulus in the defective element via 𝐸'() =
*∗∆,
-
; consequently results for 𝑘∗ ∈ 	 [0.1, 5] correspond to ."#$

.%
	 ∈

	[0.1, 5] in the continuum model. 
 
The key features of our approach are: 

• a hybrid Laplace-domain forward solver that yields 
cheap, high-fidelity forward responses used to build a 
synthetic measurement map, 

• a robust inversion pipeline that combines a coarse per-
index search with a local non-linear refine (Gauss–

Newton / constrained optimization) and simple 
smoothing regularization of the forward data; and 

• an extensive validation campaign (Monte Carlo noise 
sweeps, contrast sweeps, and sensitivity to parameter 
mismatch) that quantifies the practical detection limits. 

 
This work builds on our previous works (Egarguin et al 2020, 
Egarguin et al 2022) and attempts to make a step towards 
addressing these issues in the context of the problem of 
determining the location and size of a defect in the Young’s 
modulus of a long rod which is otherwise homogeneous. The said 
previous works dealt with defects in an acoustic duct which 
translates to defects in the mass of some bodies in a spring-mass 
system. Meanwhile, this work focuses on analyzing the defects in 
the Young’s modulus in a rod, which is approximated by defective 
springs in a 1D spring-mass system. We will start by showing the 
quantitative equivalence between a metal homogeneous rod with a 
localized defect in its Young’s modulus and a 1D homogeneous 
spring-mass system with a defective spring constant. Thus, an 
impulsive force at the left end of the rod will result in a longitudinal 
wave propagating along the rod and subsequent vibrations being 
measured at the left end point. Equivalently, the discrete system 
activated by an initial impulse applied at its first mass will generate 
vibrations through the entire system. Then, in this discrete setup, 
measurements will consist of the resulting vibrations of the first 
mass. As shown in (Egarguin et al 2022), through a 𝑧 −transform 
approach one can use the set of discrete time measurements of the 
first mass and obtain an approximation of the Laplace transform of 
the first mass vibrations (when perceived as a function of time). 
 
We then proceed towards building the analytic map relating the 
defective spring constant (defect size) and its location to the 
vibrations of the first mass. Then, in the Laplace domain, a residual 
functional is proposed measuring the discrepancy between this 
analytic map the synthetic measurements data set (i.e., the Laplace 
transform of the first mass vibrations). Finally, minimization of this 
residual functional determines both the location and magnitude of 
the stiffness defect. All of this is achieved with minimal, non-
invasive data, as measurements are only taken from one end of the 
system. In the context of a metal rod, our results show how 
vibrational data resulting from an impulsive force at one end of the 
rod will indicate the position and level of abnormal Young’s 
modulus at one point in the rod which in turn offers a prediction for 
the position and likelihood of a future crack occurring at that point. 
 

 
Figure 1: Discrete spring–mass chain model of a 1D bar with a single stiffness defect (high- lighted spring). Each mass represents a segment of the 
bar and each spring its local stiffness 𝒌𝒊.

Our proposed method shares similarities with previous works that 
evaluate vibrational NDE by modeling defects as local compliance 
using a 1D spring-mass system combined with Laplace-domain 
analysis (Cawley and Adams 1979, Rubio et al 2015). Similar to 
Zeng et al. (2023), our method inverts boundary wave 
measurements. The method determines defect parameters: the 
defect’s position along the system and its severity. Severity is 
indicated by the deviation of the spring constant from that of the 
homogeneous system. Unlike a Bayesian posterior that updates 
with each new observation, our residual minimization function can 
be optimized to identify both the size and location of the defect 
using only minimal, discrete endpoint measurements. An analytic 
inverse-spectral method was employed in (Shifrin 2017) and 
closed-form techniques were used in (Rubio et al 2015) to identify 
one or two defects from frequency data. In (Egarguin et al 2022) 
the authors used the poles of the transfer function to detect one or 

two defects with left hand measurements in a system activated by 
an impulsive force. The method we propose can handle arbitrary 
defect positions in a single-defect scenario with discrete data and 
our numerics suggest it is extensible to the case of arbitrary number 
of defects. Additionally, unlike forward-only spectral-element 
methods (see Palacz and Krawczuk 2002, Krawczuk et al 2006, 
Zhang et al 2018, Liu et al 2023) and frequency-shift 
reconstructions (Dilena and Morassi 2009), our approach develops 
an explicit inverse mapping from endpoint vibrational data to infer 
the defective spring constant and its position. In (Egarguin et al 
2020) the authors built a similar analytic map relating the defect 
characteristics to the measurement data and identify one defect 
(size and location) or two defects if a priori information about their 
location or sizes is offered. In (Egarguin et al 2022) the authors use 
the defect signature on the poles of the transfer function, although 
the method proposed there requires continuous spectral data. Both 
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of these approaches extend the concept of using a spring-mass 
system within a Laplace- domain framework. Notably, while newer 
methods employ guided-wave Bayesian inference or particle-
swarm analysis for defect identification (Zeng et al 2023, Grebla et 
al 2023), our method is computationally cheap and maintains 
accuracy even with noisy and discrete data. 
 
METHODS 
 
This section presents the mathematical framework used to identify 
the size and location of defects in otherwise homogeneous 
hyperbolic linear systems. More explicitly, we consider two one-
dimensional wave propagation models. The first one models 
transverse waves (string with fixed ends) while the second deals 
with longitudinal waves (long bar with clamped ends). Each model 
contains one defect of unknown size and location (defective 
localized string tension and respectively defective localized 
Young’s modulus). First, we show how each of these two models 
can be equivalently represented by a discrete spring–mass system 

where one spring has a defective spring constant. Then we will 
develop a new strategy to detect the position and size of the 
defective spring constant resulting, through the above equivalence, 
in a strategy to detect the defective location and size in the string 
tension or the elastic bar’s Young’s modulus, respectively. 
 
We will proceed first to describe the main paradigm in the context 
of a discrete spring and mass system. 
 
Discrete Spring–Mass–Damper Chain 
We model our structure as a chain of 𝑁 point masses 𝑚/, . . . , 𝑚" 
connected in series by linear springs and dashpots. Mass 𝑚0  sits 
between springs of stiffness 𝑘0 (to the left) and 𝑘01/ (to the right), 
and dashpots of damping 𝑑0  and 𝑑01/  (see Figure 1). Denote its 
displacement by 𝑥0(𝑡). Newton’s second law at each interior mass 
𝑗	 = 	1, . . . , 𝑁 gives (see Egarguin et al 2020, Egarguin et al 2022) 
 

=
						𝑚/𝑥/22(𝑡) = −𝑘/𝑥/ − 𝑑/𝑥/2 + 𝑘3(𝑥3 − 𝑥/) + 𝑦𝛿(𝑡)

																																																		𝑚0𝑥022(𝑡) = 𝑘0A𝑥0%/ − 𝑥0B − 𝑑0𝑥02 + 𝑘01/A𝑥01/ − 𝑥0B	for	𝑗 = 2, 3,… ,𝑁 − 1
𝑚"𝑥"22(𝑡) = −𝑘"1/𝑥�� − 𝑑"𝑥"2 − 𝑘"(𝑥" − 𝑥"%/)

where 𝛿(𝑡) denotes the Dirac distribution centered at zero. Recall 
that 𝛿(𝑡) can be heuristically described as the generalized function 
with 𝛿(𝑡) = 0 for all 𝑡 ≠ 0 and ∫ 𝛿(𝑡)	𝑑𝑡 = 114

%4 . In the previous 
system of equations, we also assumed that the system is driven by 

an impulsive force acting on the first mass with prescribed 
amplitude 𝛾. 
 
Rearranging, this can be written in the compact tridiagonal form: 
 

𝑥022 =
𝑘0
𝑚0
𝑥0%/ −

𝑘0 + 𝑘01/
𝑚0

𝑥0 +
𝑘01/
𝑚0

𝑥01/ −
𝑑0
𝑚0
𝑥02 + 𝑓0 , for	𝑗 = 1,2,… ,𝑁,																		(1)

where 𝑓/(𝑡) = 	𝛾𝛿(𝑡), 𝑓3 	=	. . . = 	𝑓" 	= 	0	 represents the 
impulsive forcing term. In Equation (1) we assumed the convention 
that (𝑥$(𝑡) 	= 	𝑥"1/(𝑡) 	= 	0). 
 

This discrete spring–mass–damper model serves as our reference. 
In Section 2.2 and Section 2.3, we will demonstrate that applying 
centered finite differences to the continuous 1D wave PDEs (string 
and bar) yields exactly these same equations once we set 
 

𝑚5 = 𝜌(𝑥5)Δ𝑥, 𝑘5 =
local	stiffness	at	𝑥5

Δ𝑥 ,				𝑑0 =
local	damping	at	𝑥5

Δ𝑥 ,			for	𝑖 = 1, 2,… ,𝑁. 

 

In the next two sections, we shall discuss the analogy of transverse 
strings (Section 2.2) and heterogenous bars (Section 2.3) to spring-
mass-damper systems (SMDS). Although the discussions in 
Section 2.2 and Section 2.3 are very similar since the underlying 
equations governing the respective vibration profiles are exactly 
the same, we chose to present each topic separately to highlight the 
physical difference between the two types of situations we address. 
In Section 2.2, we shall show that the tension in a point in the string 
can be discretely modelled as a stiffness constant of a spring in an 
SMDS. Meanwhile, we show in Section 2.3 how the 
proportionality constant between stress and strain in linear elastic 

media (i.e., the Young’s modulus) translates to a spring stiffness in 
an SMDS. 
 
Transverse String and its Spring–Mass–Damper Analogue 
We begin with the most general 1D transverse- wave equation 
modelling the time- varying vibration profile 𝑢 in a clamped string 
modeled as a one-dimensional segment [0, 𝐿], and whose linear 
density 𝜌$(𝑥), tension 𝑇(𝑥), and damping 𝜇(𝑥) vary with position: 
 

𝜕3𝑢
𝜕𝑡3 =

1
𝜌$(𝑥)

𝜕
𝜕𝑥 _𝑇

(𝑥)
𝜕𝑢
𝜕𝑥` −

𝜇(𝑥)
𝜌$(𝑥)

𝜕𝑢
𝜕𝑡 																			(2)	

 
with boundary data given by 𝑢(0, 𝑡) 	= 	𝑢(𝐿, 𝑡) 	= 	0 and activated 
by impulsive initial data, i.e. 𝑢(𝑥, 0) = 0, 𝑢2(𝑥, 0) = 	𝛾𝛿(𝑥) . 
Sampling at equally spaced points 𝑥5 	= 	𝑖∆𝑥, for	𝑖	 = 	0,
1, . . . , 𝑁 + 1, (i.e., (𝑁	 + 	1)∆𝑥	 = 	𝐿), letting 𝜌5 	= 	𝜌$(𝑥5), 	𝑇5 =
𝑇(𝑥5), 	𝜇5 	= 𝜇(𝑥5),  and 𝑢5 ≈ 𝑢(𝑥5 , 𝑡) , and applying a forward 

finite difference approximation for 67
6,

 we obtain the following 
finite difference approximation for the spatial derivative 
6
6,
b𝑇(𝑥) 67

6,
c: 

 

𝜕
𝜕𝑥
(𝑇𝑢,)d

,8,'
≈
𝑇51/𝑢51/ − (𝑇5 + 𝑇51/)𝑢5 + 𝑇5𝑢5%/

(Δ𝑥)3 ,				𝑖 = 1, 2,… ,𝑁.

If we let 𝑢522 =
9(7'
9:(

 and 𝑢52 =
97'
9:

, the discrete update reads 

𝑢522 =
1
𝜌5
𝑇51/𝑢51/ − (𝑇5 + 𝑇51/)𝑢5 + 𝑇5𝑢5%/

(Δ𝑥)3 −
𝜇5
𝜌5
𝑢52,				𝑖 = 1, 2,… ,𝑁.																					(3)
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with the observation that the fixed end boundary conditions imply 
𝑢$ 	= 	𝑢;1/ 	= 	0. 
 
On the other hand, from Equation (1) we have that the equation of 
motion for the ith mass 𝑥5(𝑡)  in a discrete chain of 𝑁  masses 

𝑚/, . . . , 𝑚"  linked by springs 𝑘/, . . . , 𝑘"1/  and dashpots 
𝑑/, . . . , 𝑑", assuming that 𝑥$(𝑡) 	= 	𝑥"1/(𝑡) 	= 	0, is 
 

𝑥522 =
𝑘5
𝑚5
𝑥5%/ −

𝑘5 + 𝑘51/
𝑚5

𝑥5 +
𝑘51/
𝑚5

𝑥51/ −
𝑑5
𝑚5
𝑥52 + 𝑓0 ,				𝑖 = 1, 2,… ,𝑁.																				(4)

Equations (3) and (4) coincide exactly under the identifications 

𝑚5 = 𝜌5Δ𝑥,			𝑘5 =
𝑇5
Δ𝑥,			𝑑5 = 𝜇5Δ𝑥.

Therefore, each string segment of length ∆𝑥  and density 
𝜌5	becomes a discrete mass 𝑚5 , each local tension 𝑇5  becomes a 
spring stiffness constant 𝑘5 , and the continuous damping 𝜇5 
becomes the damping coefficient 𝑑5 . This one-to-one mapping 
showcases our defect-imaging strategy, which treats local changes 
in 𝑇(𝑥)  as defective springs in the spring and mass chain. In 
particular, a localized modification in the string tension 𝑇0∗ 
corresponds to a defective spring 𝑘0∗ in the chain, enabling us to 
detect defect location and severity via spring–mass inversion. 
 

Longitudinal Vibration in a Heterogeneous Bar and Its 
Spring–Mass Analogue 
Consider axial vibrations 𝑤(𝑥, 𝑡)  in a rod of length 𝐿  whose 
density 𝜌(𝑥) , Young’s modulus 𝐸(𝑥) , and damping 𝜇(𝑥)  vary 
with position, that satisfies 
 
 
 
 
 

𝜌(𝑥)
𝜕3𝑤
𝜕𝑡3 =

𝜕
𝜕𝑥 _𝐸

(𝑥)
𝜕𝑤
𝜕𝑥` − 𝜇

(𝑥)
𝜕𝑤
𝜕𝑡 ,																								(5)

where we assumed homogeneous Dirichlet boundary conditions 
𝑤(0, 𝑡) 	= 	𝑤(𝐿, 𝑡) 	= 	0  and the vibrations generated by an 
impulsive initial data, i.e., 𝑤(𝑥, 0) 	= 	0; 	𝑤′(𝑥, 0) 	= 	𝛾𝛿(𝑥). We 
recall that as classically defined, the Young’s modulus 𝐸(𝑥) is the 
proportionality constant between stress and strain in linear elastic 
media (with stress defined as the internal force per unit area and 
strain as the measure of elongation (gradient of the displacement)). 
We mention that the Young’s modulus usually encodes the level of 
stress accumulation in the media. 

 
We discretize Equation (5) with 	𝑥5 	= 	𝑖∆𝑥, 𝑖	 = 	0, . . . , 𝑁 + 1 , 
∆𝑥	 = !

"1/
, and by setting 𝜌5 	= 	𝜌(𝑥5), 𝐸5 	= 	𝐸(𝑥5), 𝜇5 = 𝜇(𝑥5), 

and writing 𝑤5(𝑡) 	≈ 	𝑤(𝑥5 , 𝑡) . A centered- difference 
approximation in 𝑥 gives 
 

𝜕
𝜕𝑥
(𝐸𝑤,)d

,8,'
≈
𝐸51/𝑤51/ − (𝐸5 + 𝐸51/)𝑤5 + 𝐸5𝑤5%/

(Δ𝑥)3 .

Hence, denoting 𝑤522 =
9(<'
9:(

, 𝑤52 =
9<'
9:

, the finite-difference update 
is 

𝑤522 =
1
𝜌5
	
𝐸51/𝑤51/ − (𝐸5 + 𝐸51/)𝑤5 + 𝐸5𝑤5%/

(Δ𝑥)3 −
𝜇5
𝜌5
𝑤52,				𝑖 = 1,… ,𝑁,																			(6)

with the observation that the fixed end boundary conditions imply 
𝐸$ = 𝐸;1/ = 0. 
 
On the other hand, from equation (1) we have that the equation of 
motion for the ith mass 𝑥5(𝑡)  in a discrete chain of 𝑁  masses 
𝑚/, . . . , 𝑚"  linked by springs 𝑘/, . . . , 𝑘"1/  and dashpots  

𝑑/, . . . , 𝑑" , assuming that 𝑥$(𝑡) 	= 	𝑥"1/(𝑡) 	= 	0 , is given by 
Equation (4). Equations (4) and (6) coincide exactly under the 
identifications 
 

𝑚5 = 𝜌5Δ𝑥,			𝑘5 =
𝐸5
Δ𝑥,			𝑑5 = 𝜇5Δ𝑥.

Therefore, each string segment of length ∆𝑥  and density 𝜌5 
becomes a discrete mass 𝑚5 , each local Young’s modulus 𝐸5 
becomes a spring stiffness constant 𝑘5, and the continuous damping 
𝜇5 becomes the damping coefficient 𝑑5. This one-to-one mapping 
showcases our defect-imaging strategy, which treats local changes 
in 𝐸(𝑥)  as defective springs in the spring and mass chain. In 

particular, a localized drop (or rise) in the bar’s Young’s modulus 
𝐸0∗ corresponds to a defective spring 𝑘0∗ in the chain (highlighted 
in Figure 2), enabling us to detect defect location and severity via 
spring–mass inversion. 
 

 
Figure 2: Left: a continuous bar with a localized Young’s-modulus defect at 𝒙𝒋∗ . Right: the equivalent spring–mass chain where the 𝒋th spring has 

altered stiffness 𝒌𝒋∗ =
𝑬𝒋∗

∆𝒙
.
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Mathematical Framework for Characterizing Defective 
Springs in a Spring-mass System 
We consider the system in equation (1) first under the 
homogeneous assumption and then a system with one defective 
spring constant. Thus, for the homogeneous system, i.e., when 

𝑚0 	= 	1, 𝑑0 	= 	𝑑, 𝑘0 	= 	𝑘, driven by the impulsive force at the 
first mass, we have the following mathematical model (Egarguin et 
al 2020, Egarguin et al 2022): 
 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑥/22 + 𝑑𝑥/2 + 2𝑘𝑥/ − 𝑘𝑥3 																																		= 𝛾𝛿(𝑡)

𝑥322 + 𝑑𝑥32 + 2𝑘𝑥3 − 𝑘𝑥/ − 𝑘𝑥= 													= 0
⋮

𝑥022 + 𝑑𝑥02 + 2𝑘𝑥0 − 𝑘𝑥0%/ − 𝑘𝑥01/ 													= 0
⋮

𝑥"%/22 + 𝑑𝑥"%/2 + 2𝑘𝑥"%/ − 𝑘𝑥"%3 − 𝑘𝑥" = 0
𝑥"22 + 𝑑𝑥"2 + 2𝑘𝑥" − 𝑘𝑥"%/ 																										= 0

.												(7)

 
Now, suppose that all constants are equal to 1, except that of the 
spring at position 𝑗 with a spring constant 𝑘∗ ≠ 	1. Then the system 
becomes 

 
 
 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
𝑥/22 + 𝑑𝑥/2 + 2𝑥/ − 𝑥3 																																											= 𝛾𝛿(𝑡)

𝑥322 + 𝑑𝑥32 + 2𝑥3 − 𝑥/ − 𝑥= 																									= 0
⋮

𝑥0%/22 + 𝑑𝑥0%/2 + (1 + 𝑘∗)𝑥0%/ − 𝑥0%3 − 𝑘∗𝑥0 		= 0
𝑥022 + 𝑑𝑥02 + (1 + 𝑘∗)𝑥0 − 𝑘∗𝑥0%/ − 𝑥01/ 							= 0

⋮
𝑥"%/22 + 𝑑𝑥"%/2 + 2𝑥"%/ − 𝑥"%3 − 𝑥" 										= 0
𝑥"22 + 𝑑𝑥"2 + 2𝑥" − 𝑥"%/ 																																	= 0

.												(8)

Taking the Laplace transform of the expressions in Equation (8) 
plus some algebraic manipulation yields 
 

 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ (𝑠3 + 𝑑𝑠 + 2)	𝑥q/ − 𝑥q3 																														= 𝛾

(𝑠3 + 𝑑𝑠 + 2)𝑥q3 − 𝑥q/ − 𝑥q= 																					= 0
⋮

A𝑠3 + 𝑑𝑠 + (1 + 𝑘∗)B𝑥q0%/ − 𝑥q0%3 − 𝑘∗𝑥q0 				= 0
A𝑠3 + 𝑑𝑠 + (1 + 𝑘∗)B𝑥q0 − 𝑘∗𝑥q0%/ − 𝑥q01/ = 0

⋮
(𝑠3 + 𝑑𝑠 + 2)𝑥q"%/ − 𝑥q"%3 − 𝑥q" 										= 0
(𝑠3 + 𝑑𝑠 + 2)𝑥q" − 𝑥q"%/ 																								= 0

	.																		(9)

Letting ℎ	 = 	−(𝑠3 + 	𝑑𝑠 + 2)  and performing some more 
algebraic manipulations allow us to write the System (9) into the 
matrix form 

𝐴𝑋 = 𝑏											(10) 
 
where 𝐴 is the tridiagonal matrix given by 
 

 
 
 
 
 

𝐴 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

ℎ 1
1 ℎ 1
0 1 ℎ 1

. . .
1 ℎ + 1 − 𝑘∗ 𝑘∗

𝑘∗ ℎ + 1 − 𝑘∗ 1
. . .

1 ℎ 1
1 ℎ

⁠

⎠

⎟
⎟
⎟
⎟
⎟
⎞

.								(11)

In Equation (11), the diagonal entries ℎ + 1 − 𝑘∗ occur in the row 
numbers 𝑗 − 1 and 𝑗. Meanwhile the right-hand side vector 𝑏 is 
given by 𝑏	 = 	 [−𝛾	0	. . . 0]> and the unknown vector 𝑋 consists of 
the responses  𝑥q5 , 𝑖	 = 	1, 2, . . , 𝑁 of each mass to the excitation 
force in the Laplace domain. 
 
 
 
 
 
 

The coefficient matrix 𝐴 can further be manipulated and written in 
the form 𝐴	 = 	𝐴? 	+	𝑃0  where 𝐴? =

⎝

⎜⎜
⎛

ℎ 1
1 ℎ 1
0 1 ℎ 1

			⋱ ⋱ 		⋱
1 ℎ 1

1 ℎ⎠

⎟⎟
⎞

 is the tridiagonal 𝑁 ×𝑁  matrix 

obtained by taking the Laplace transform of the homogeneous 
(nondefective) System (7) and 𝑃0 is the sparse 𝑁 ×𝑁 matrix 
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𝑃0 = 𝐴 − 𝐴? =

⎝

⎜⎜
⎛

0
⋮

0 … 1 − 𝑘∗ 𝑘∗ − 1 … 					0
0 … 𝑘∗ − 1 1 − 𝑘∗ … 					0

⋮
0 ⎠

⎟⎟
⎞

whose only four nonzero entries occur at 𝑗 − 1@A and 𝑗AB rows of 
the 𝑗 − 1@A and 𝑗AB columns. The results from	(Hu and O’Connell 
1996) suggest that since the diagonal entries ℎ of 𝐴? involving the 
Laplace domain variable 𝑠 > 0 and the damping coefficient 𝑑 > 0 
satisfy 

ℎ = −(𝑠3 + 	𝑑𝑠 + 2) < −2 
 
then 𝐴? is invertible with inverse given explicitly by 
 

𝑅 = 𝐴?%/ = A𝑅C,EB 
 
where following Hu’s notations, 
 

𝑅C,E =
cosh[(𝑁 + 1 − |𝑝 −𝑚|)𝜆] − cosh[(𝑁 + 1 −𝑚− 𝑝)𝜆]

2 sinh 𝜆 sinh(𝑁 + 1)𝜆  

 

and 𝜆  satisfies ℎ = −2cosh 𝜆 . Thus, System (10)  can be 
expanded as 
 

																𝐴𝑥 = 𝑏 
A𝐴? + 𝑃0B𝑥 = 𝑏 
𝑅A𝐴? + 𝑃0B𝑥 = 𝑅𝑏 
							𝑥 + 𝑅𝑃0𝑥 = 𝑅𝑏 

 
Note that since 𝑃0 is sparse, consisting only of four nonzero entries, 
the matrix product 𝑅𝑃0𝑥 can easily be computed. In fact, for any 
𝑖 = 1, 2,… ,𝑁 we have 
 
 
 
 
 

𝑥q5 + 𝑅5,0%/ b(1 − 𝑘∗)𝑥q0%/ + (𝑘∗ − 1)𝑥q0c + 𝑅5,0 b(𝑘∗ − 1)𝑥q0%/ + (1 − 𝑘∗)𝑥q0c = −𝑅5,/𝛾.								(12)
 
In particular, taking 𝑖 = 1 in Equation (12) gives us the following 
expression for the Laplace domain response 𝑥q/	of the first mass to 
the impulse force in terms of 𝑥q0%/ and 𝑥q0 
 

 

𝑥q/(𝑠) = −𝛾𝑅/,/ − (1 − 𝑘∗)(𝑅/,0%/ − 𝑅/,0)	𝑥q0%/(𝑠) − (1 − 𝑘∗)(𝑅/,0 − 𝑅/,0%/)𝑥q0(𝑠).														(13)
 
Meanwhile, separately using 𝑖 = 𝑗 − 1 and 𝑖 = 𝑗 in Equation (12) 
and algebraically manipulating the resulting equations give us the 
following system obeyed by the responses 𝑥q0%/  and 𝑥q0  of the 
masses immediately adjacent to the defective spring 
 

 
 
 
 

=
(1 − 𝑘∗)A𝑅0,0%/ − 𝑅0,0B𝑥q0%/ + b1 + (𝑅0,0 − 𝑅0,0%/)(1 − 𝑘∗)c 𝑥q0

b1 + A𝑅0%/,0%/ − 𝑅0%/,0B(1 − 𝑘∗)c 𝑥q0%/ + A𝑅0%/,0 − 𝑅0%/,0%/B(1 − 𝑘∗)𝑥q0

	=
	=

−𝛾𝑅0,/
−𝛾𝑅0%/,/

.																					(14)

 
Solving the preceding system of linear equations in the unknowns 
𝑥q0%/ and 𝑥q0 gives 
 

 
 

�
𝑥q0%/ = −

−𝛾𝑅0,/𝑉 + 𝛾𝑅0%/,/𝐺
𝐺𝑈 − 𝐹𝑉

𝑥q0 = −
𝛾𝑅0,/𝑈 − 𝛾𝑅0%/,/𝐹

𝐺𝑈 − 𝐹𝑉

,																													(15)

 

where 𝐹 = (1 − 𝑘∗)A𝑅0,0%/ − 𝑅0,0B,  
𝐺 = 1 + A𝑅0,0 − 𝑅0,0%/B(1 − 𝑘∗),  
𝑈 = 1 + A𝑅0%/,0%/ − 𝑅0%/,0B(1 − 𝑘∗)	and  
𝑉 = A𝑅0%/,0 − 𝑅0%/,0%/B(1 − 𝑘∗). Using the equations in System 
(15) into Equation (13) yields an explicit expression for the 
response of the first system as a function of the parameters 𝑗 and 
𝑘∗ representing the defect location and defect size, respectively. 
Ideally, this analytic expression for 𝑥q/ will be compared to the data 
obtained by directly measuring the Laplace domain response of the 
first mass in a physical system with a defective spring. In this paper 
however, we instead compare 𝑥q/to a synthetic data obtained by 
independently solving System (9). This process is discussed in the 
following subsection. 
 
 
 

 
The Optimization Algorithm 
The proposed method identifies the defective spring in the system 
whose first mass is excited by the impulse force 𝛿. This is done by 
minimizing the discrepancy between the analytically computed 
response of the first mass and the noisy synthetic data that mimics 
measurements from a physical setting. Let 𝑥q/,FGFHIAJK  be the 
analytically computed response, defined as 𝑥q/   in Equation (13) 
with System (15), of the first mass. Since we assume that our 
scheme has no access to the location and size of the defect, we 
consider 𝑥q/,FGFHIAJK as a function of the location 𝑗 of the defect, the 
size 𝑘 of the defect, and the Laplace variable 𝑠. Meanwhile, we let 
𝑥q/,@IGAB(AJK  denote the synthetic data that mimic perfect real-life 
measurements in the Laplace domain. To simulate measurement 
uncertainty, a Gaussian noise 𝜖 is added to the synthetic data. The 
measurement noise is quantified by its relative size with the 
synthetic data. The objective function to be minimized is 
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𝑓(𝑗, 𝑘) = log�� �𝑥q/,FGFHIAJK(𝑗, 𝑘, 𝑠) − b𝑥q/,@IGAB(AJK	(𝑠) + 𝜖(𝑠)c�
3
𝑑𝑠

14

$
� ,

 
which is the logarithm of the squared 𝐿3- norm of the residual. The 
logarithm ensures that the optimizer (fmincon) avoids premature 
termination due to very small jumps in the objective function 
values between iterations. The introduction of the noise function 
𝜖	makes this approach better reflect the conditions of practical 
defect detection, where the measurements are inevitably corrupted 
by noise. 
 
In practice we run the local optimizer (MATLAB fmincon) 
independently for each candidate defect index 𝑗	 ∈ 	 {2, . . . , 𝑁} and 
pick the (𝑗, 𝑘)  pair with minimal residual. This exhaustive per 
index procedure reduces the optimizer’s sensitivity to local minima 
in the variable 𝑘 and keeps the inversion computationally cheap 
(by just performing one forward solve per 𝑗 ). The optimizer 
employs gradient-based methods to search for a local minimum of 
a user-defined objective function, subject to linear and nonlinear 
constraints, as well as bound restrictions. Because it is a local 
solver, its success depends strongly on the smoothness of the 
objective landscape and the choice of initial guess. For each 
candidate 𝑗, fmincon is executed to estimate the optimal 𝑘 that  

 
minimizes the residual. This process is repeated for all 𝑗	 ∈
	{2, . . . , 𝑁	}, and the pair (𝑗, 𝑘) that produces the minimum value of 
the objective function is selected as the location and estimated size 
of the defect. 
 
 
RESULTS AND DISCUSSION 
 
In this section, we present the defect characterization scheme that 
aims to find the location and size of the single defective spring in a 
system of arbitrary length. All computations are performed on a 
nondimensional 1D chain of length 𝐿	 = 	1 with 𝑁	 = 	100 cells 
and ∆𝑥	 = /

"
. For convenience, we set the nondimensional cross-

section 𝐴	 = 	1  and the nominal mass and stiffness per cell to 
𝑚5 	= 	1, 𝑘	 = 	1. To map results to physical units, one can choose 
a physical cross-section 𝐴E?LM , density 𝜌  and baseline Young’s 
modulus 𝐸$. The physical cell length is ∆𝑥E?LM 	=

!-./0
"

, and 

𝑚5
E?LM = 𝜌𝐴E?LMΔ𝑥E?LM,											𝑘5

E?LM =
𝐸5𝐴E?LM
Δ𝑥E?LM

.

Hence the conversion factors are 𝑚NOP 	= 	𝜌𝐴E?LM∆𝑥E?LM  and 
𝑘NOP 	=

.%--./0
∆,-./0

, and physical time/frequency follow 
 

𝑡E?LM = 𝑡�
𝑚NOP

𝑘NOP
,				and	𝜔E?LM = 𝜔�

𝑘NOP
𝑚NOP

,

where 𝑡, 𝜔  denote the time and frequency, respectively and 

�
C123

*123
= Q,-./0

R
	 with 𝑐 = �.%S , so a nondimensional time unit 

equals the travel time across one cell. 
 
We illustrate the effect of measurement noise to this approach 
necessitating the need for the introduction of what we call the σ- 
smooth approach. This modification in the objective function, 
coupled with a Monte Carlo run, mitigates the effect of the noise to 
the system. The section ends with an illustration of a more analytic 
approach that can be an alternative for scenarios when the defect is 
located near the end of the system. 
 
A Noise-free Simulation 
In this section, we demonstrate that the good performance of the 
proposed optimization procedure for noise- free data. Figure 3 
shows the synthetic data generated with the following parameters: 
number of masses 𝑁	 = 	100 , damping coefficient 𝑑	 = 	0.1 , 
impulse intensity 𝛾	 = 	1, uniform spring constant 𝑘	 = 	1, defect 
location 𝑗ATU( 	= 	40 , and defect spring constant 𝑘∗ 	= 	1.3 . In 
other words, the system contains a single defective spring in 
position 𝑗ATU( 	= 	40  with stiffness 𝑘∗ 	= 	1.3 , while all other 
springs have 𝑘	 = 	1. 
 

 
Figure 3: Graph of Synthetic Data for the system with parameters 𝑵	 =
	𝟏𝟎𝟎,	𝒅	 = 	𝟎. 𝟏, 𝜸	 = 	𝟏, 𝒋	 = 	𝟒𝟎, and 𝒌∗ = 	𝟏. 𝟑. 	

To identify the defect, the optimization routine fmincon was 
executed 99 times, once for each possible location of the defect 𝑗	 ∈
	{2, . . . , 100} . For each 𝑗 , the optimizer solved for the optimal 
defect size 𝑘	that minimizes the objective function 𝑓(𝑗, 𝑘). Figure 
4 shows the corresponding minimal residual values with respect to 
𝑘 , calculated as 10P(0,*)  for each possible value of 𝑗. Here, the 
𝑥 −axis corresponds to the possible defect locations 𝑗, while the 
𝑦 −axis represents the residual magnitude 10PX0,*4

∗Y	, where 𝑘0∗ is 
the minimizer of the objective function for each fixed value of 𝑗. 
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Figure 4: Residual as a function of the possible defect location. 

The results indicate that the smallest residual occurs at 𝑗	 = 	40, 
matching the true defect location.  The corresponding computed 
defect stiffness is 𝑘∗ ≈ 	1.299848, which is in excellent agreement 
with the true value 𝑘∗ 	= 	1.3. The relative error is Z*5678

∗ %*∗Z
*∗

≈
1.17 × 10%[ , demonstrating high accuracy. This suggests that 
given a perfect set of measurement values of the system response, 
the proposed method yields highly reliable results. The next 
subsection shows the effect of the introduction of various noise 
levels to the measurements. 
 
Effect of Gaussian Noise 
Modern laboratory Laser Doppler Vibrometers (LDV) achieve sub-
nanometer to picometer- class displacement noise floors depending 
on bandwidth and surface reflectivity; assuming a conservative 
axial displacement noise of order 10%\  m for our experimental 
bandwidth is realistic (see Ofv-5000 2025, Rothberg et al 2017). 
Thus, we test our algorithm for sensitivity to noise of magnitude 
within the threshold of modern LDVs. 
 
Figure 5 and Figure 6 show the effect of the Gaussian noise ϵ on 
the accuracy of defect detection. We again consider the defective 
system with the same parameters as the ones used in Section 3.1. 
 

 
Figure 5: Relative error in the estimate for the defect location as a 
function of noise level for the system with parameters 𝑵	 = 	𝟏𝟎𝟎, 𝒅	 =
	𝟎. 𝟏, 𝜸	 = 	𝟏, 𝒋	 = 	𝟒𝟎, and 𝒌∗ 	= 	𝟏. 𝟑. 

 

 
Figure 6: Relative error in the estimate for the defect size as a function 
of noise level for the system with parameters 𝑵	 = 	𝟏𝟎𝟎, 𝒅	 = 	𝟎. 𝟏, 𝜸	 =
	𝟏, 𝒋	 = 	𝟒𝟎, and 𝒌∗ 	= 	𝟏. 𝟑. 
 
Figure 5 plots the relative error in the predicted defect location as 
a function of the relative size of 𝜖. For 𝜖 of magnitude 10%], 10%^, 
and 10%\  relative to the synthetic data, the predicted defect 
location matches the true location exactly. However, when the 
noise level is at 10%&, the relative error in the predicted location 
increases to approximately 5%, and it continues to grow as the 
noise level increases. This suggests a noise level threshold near of 
10%\  beyond which location detection degrades significantly. 
Meanwhile, Figure 6 shows the relative error in computed defect 
size as a function of noise level. At noise level 10%&, the relative 
error in the estimated defect size is about 9.30%, whereas for 𝜖	 =
	10%\, the error is on the order of 10%\. This confirms that 10%\ 
serves as a practical noise level threshold for accurate detection. 
Notably, this noise level is still well within the capabilities of 
modern defect detection systems, which can achieve precision up 
to 10%/3. 
 
In the next subsection, we present a modification of the basic 
optimization algorithm that mitigates the effect of the measurement 
noise. We shall see that this approach improves the noise level 
threshold by some orders. 
 
The 𝝈 −smooth Approach 
To further improve robustness against noise, we propose a variant 
of the optimization procedure, which we refer to as the σ-smooth 
approach. The framework remains the same: we begin with the 
synthetic data 𝑥q/,@IGAB(AJK, add Gaussian noise 𝜖 of prescribed size, 
and then minimize the residual between the analytic and measured 
responses. The key modification is the introduction of a random 
perturbation to the defect size parameter 𝑘  in the objective 
function. 
 
In the original formulation, the optimizer solves directly for 𝑘. In 
the σ-smooth approach, however, the unknown 𝑘 is replaced by 
 

𝑘 + 𝛿 
 
where 𝛿 is a random perturbation drawn from a normal distribution 
with mean zero and variance 𝜎3, i.e., 𝛿	 ∼ 	𝑁	(0, 𝜎3). Thus, instead 
of estimating a single deterministic value of k, the method 
effectively searches for an interval [𝑘	 −	∆, 𝑘	 + ∆] of admissible 
values. This allows the solution to remain stable under noisy 
conditions, since small shifts in 𝑘 within this interval still produce 
consistent results. 
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To account for randomness in 𝛿 , we generate 𝑁_  independent 
samples {𝛿5}58/

"9   from the distribution above. For each 𝛿5 , we 
evaluate the modified objective function 

𝑓(𝑗, 𝑘; 𝛿5) = log��� �𝑥q/,FGFHIAJK(𝑗, 𝑘 + 𝛿5 , 𝑠) − b𝑥q/,@IGAB(AJK	(𝑠) + 𝜖(𝑠)c�
314

$
�

/
3
� .

The σ-smooth objective is then defined as the average: 
 

𝐹(𝑗, 𝑘) =
1
𝑁_
�𝑓(𝑗, 𝑘; 𝛿5).
"9

58/

 

 
Minimization is performed on 𝐹  with respect to 𝑘 , while 𝑗  is 
treated as a discrete variable as before. When 𝜎 = 	0, the method 
reduces to the deterministic formulation. For 𝜎	 > 	0 , the 
perturbation introduces robustness by mitigating the effect of 
Gaussian noise in the measured data. In practice, we found that 
setting 𝜎	 = 	10%[  and averaging over 𝑁_ 	≈ 	50  samples is 
sufficient to stabilize the results. 
 
Note that Monte Carlo runs were also employed in the σ-smooth 
approach to account for the presence of noise and the stochastic 
nature of the defect detection problem. By repeating the 
optimization procedure over multiple randomized noise 
realizations, we were able to obtain statistically reliable estimates 
of the residual functional and the optimizer’s performance. This 
averaging process reduces sensitivity to a single noise instance and 
highlights the overall trend of defect detectability across different 
locations. The final estimates for the defect location and defect size 
are taken to be the median of the respective estimates from each 
Monte Carlo run.  
 
A Simulation Employing the σ-smooth Approach 
To assess the performance of the σ-smooth approach, we compared 
its results against the deterministic method under noisy conditions. 
In particular, we tested the method by considering the defective 
system with the same parameters as in Section 3.2 but with noise 
of size 5	 ×	10%&. The results are shown in Figure 7. 
 
Without regularization (i.e., using the deterministic approach), the 
relative error in defect location was approximately 2.5%, while the 
relative error in the computed defect size was about 5.75%. These 
results indicate noticeable degradation in accuracy under noise. 
 
In contrast, when the σ-smooth approach with 𝑁_ 	= 	50  was 
applied to 100 Monte Carlo runs with each run having a different 
noise function, the performance improved significantly. The 
resulting estimates for the defect location and defect size for the 
simulation described above are plotted in Figure 7 and Figure 8, 
repsectively. Recall that the final estimates for the defect location 
and defect size were taken to be the median of the respective 
estimates from all the Monte Carlo runs. The median was chosen 
as multiple runs suggest that the optimization have the tendency to 
produce outlier estimates. The median provides a more robust 
measure of central tendency in the presence of these outliers or 
even skewed distributions of the results. The presence of outliers 
in the current simulation can be observed in Figure 7 and Figure 8. 
The relative error in defect location decreased from 2.5% to 0%, 
meaning the defect was identified exactly. Similarly, the relative 
error in the computed defect size dropped from 5.75% to 
1.8	 ×	10%[ , demonstrating several orders of magnitude 
improvement. These results suggest that the proposed σ-smooth 
approach is effective in mitigating the influence of noise. Figure 7 
illustrates the defect location identified in each simulation run, 
while Figure 8 shows the corresponding results for the defect size. 
In both figures, we can observe that a significant portion of the 
Monte Carlo runs produced estimates that are substantially 

different from the true defect location and true defect size.  This 
shows that indeed, measurement noise significantly affects the 
defect characterization scheme as the skew some of the 
optimization results. However, the use of the median across all 
Monte Carlo runs mitigated the effect of the outliers and skewed 
results. 
 

 
Figure 7: Estimates for the defect location from 100 Monte Carlo runs of 
the σ-smooth Approach. 

 
Figure 8: Estimates for the defect size from 100 Monte Carlo Runs σ-
smooth Approach. 

Multiple Simulation Runs 
In this subsection, we investigate the limits of the robustness of σ-
smooth approach. We reuse the σ-smooth approach with 𝑁_ 	= 	50 
draws across 100 Monte Carlo runs for defective systems with 
varying defect location and defect sizes. The common parameters 
among these systems are the uniform spring constant 𝑘	 = 	1 , 
damping coefficient 𝑑	 = 	0.1, and number of masses 𝑁	 = 	100. 
In all the experiments, the noise level was set to 5	 ×	10%[. 
 
Defect Detection for Fixed Defect Size and Varying Location 
First, we employ the σ-smooth approach to characterize the defect 
in systems with a defective spring of stiffness 𝑘∗ 	= 	1.30  but 
varying locations 𝑗 across the chain. Figure 9 shows the estimated 
defect size as a function of the true defect location. For most defect 
locations, the optimizer is able to recover the defect size accurately, 
yielding values close to 𝑘∗ 	= 	1.30. Meanwhile, Figure 10 shows 
the relative error in the defect size estimates as a function of the 
true defect location. One can observe from Figure 10 that beginning 
around 𝑗	 = 	79, the optimizer experiences increasing difficulty in 
estimating the defect size, resulting in unstable or significantly 
overestimated values.We observe that up to 𝑗	 = 	78, the relative 
error remains below the 5% threshold. Beyond this point, however, 
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the relative error grows rapidly, indicating a degradation in the 
scheme’s accuracy when the defect is located near the end of the 
system.  
 

 
Figure 9: Estimate for the Defect Size vs Actual Defect Location for the 
Simulation in Section 3.5.1. 

 
Figure 10: Relative Error in the Defect Size Estimate vs Actual Defect 
Location for the Simulation in Section 3.5.1. 

Figure 11 shows the estimated defect location versus the true defect 
location. The optimizer performs very well in this task, producing 
estimates that closely follow the diagonal line (perfect agreement). 
The corresponding relative error, shown in Figure 12, confirms 
this: the location is always predicted within at most 2.33% error, 
which corresponds to a maximum of two positions away from the 
true defect location. 
 

 
Figure 11: Estimate for the Defect Location vs Actual Defect Location for 
the Simulation in Section 3.5.1. 

 
Figure 12: Relative Error in the Defect Location Estimate vs Actual 
Defect Location for the Simulation in Section 3.5.1. 

In summary, for a fixed defect size 𝑘∗ 	= 	1.30 , the optimizer 
reliably identifies the defect location across the entire domain, but 
struggles to estimate the defect size accurately once the defect is 
positioned near the end of the system. This makes sense from the 
physical point of view as the exciting force dissipates fast as it 
travels across the chain. Hence, the effect of the defect to the 
vibrations in the first mass becomes less and less as the defect’s 
location becomes close to the other end. One way to handle such 
cases is to incorporate measurements from the last mass in the 
optimization. This will be explored in upcoming studies. 
 
Defect Detection for Fixed Location and Varying Defect Size 
Now, we fix the defect location at 𝑗	 = 	40 and vary the defect size 
𝑘∗. Figure 13 shows the estimated defect size as a function of the 
true defect size. The estimates align almost perfectly with the 
diagonal, indicating that the scheme is highly successful in 
recovering the true defect size across the tested range. Figure 14 
which shows the corresponding relative error in the defect size 
estimate, further confirms this observation. It shows that the 
maximum error is just around 2.77%. 
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Figure 13: Estimate for the Defect Size vs Actual Defect Location for the 
Simulation in Section 3.5.2. 

 
Figure 14: Relative Error in the Defect Size Estimate vs Actual Defect 
Location for the Simulation in Section 3.5.2. 

Figure 15 shows the estimated defect location as a function of the 
true defect size. Here, the estimates remain constant at the true 
defect location 𝑗	 = 	40. Figure 16 displays the relative error in the 
defect location estimate as a function of actual defect size. From 
there, one can observe that the defect locations are always exactly 
calculated. 
 

 
Figure 15: Estimate for the Defect Location vs Actual Defect Location for 
the Simulation in Section 3.5.2. 

 
Figure 16: Relative Error in the Defect Location Estimate vs Actual 
Defect Location for the Simulation in Section 3.5.2. 

These multi-case simulations show that the defect characterization 
scheme utilizing several Monte Carlo runs of the σ-smooth 
approach works well with most systems of various defect locations 
and defect sizes even when the measurement data are tainted with 
noise of size 5	 ×	10%[. The exemptions are the cases when the 
defect is located near the end of the system. To address these cases, 
we mentioned a possible extension of the current approach which 
incorporates the measurements from the other end of the system. 
Another approach, albeit more mathematically involved and 
computationally expensive is to simply plot the residual as 
symbolic functions of 𝑗 and 𝑘. This approach is illustrated in the 
next subsection. 
 
An Analytic Approach: Sketching the Graph of the Residual 
Function 
To address the cases when the defect is located near the end of the 
system, we employ a purely analytic approach. This time, we 
treated all quantities as symbolic functions and directly evaluated 
the residual 

𝑓(𝑗, 𝑘) = log�� �𝑥q/,FGFHIAJK(𝑗, 𝑘, 𝑠) − b𝑥q/,@IGAB(AJK	(𝑠) + 𝜖(𝑠)c�
3
𝑑𝑠

14

$
� ,

as a function of the possible defect locations 𝑗 and defect sizes 𝑘. 
For these experiments, we introduced a noise of magnitude 
5	 ×	10%[ . By evaluating 𝑓	(𝑗, 𝑘)  across a range of defect 
locations and defect magnitudes and plotting the results as a three-
dimensional surface, we can visually identify the location and size 
of the defect. 
 

First, we consider the case of a system with the following 
parameters: 𝑁	 = 	100, 𝑑	 = 	0.1, 𝑘	 = 	1 , 𝑘∗ 	= 	1.3, 𝑗∗ 	= 	85 . 
The residual 10P(0,*) is plotted in Figure 17. Here, we see spikes in 
the surface, indicating the extreme values of the residuals. Two 
dimensional slices of this surface are shown in Figure 18 and 
Figure 19, indicating that the global minima indeed occur at 𝑗	 =
	85 and 𝑘	 = 	1.3. 
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Figure 17: Graphs of the residual as a function of location and defect 
size in the system with 𝑵	 = 	𝟏𝟎𝟎, 𝒅	 = 	𝟎. 𝟏, 𝒌	 = 	𝟏, 𝒌∗ 	= 	𝟏. 𝟑, 𝒋	 = 	𝟖𝟓 : 
(a) Full 3D graph, (b) 2D slice showing the residual as a function of 
possible defect location, and (c) 2D slice showing the residual as a 
function of possible defect size 

These plots also indicate why the optimization routine employing 
fmincon is having some difficulties in characterizing the defect. 
The frequent oscillations of the residual function create multiple 
local minima. The MATLAB fmincon, being a local solver might 
had been trapped in one of these local minima and hence, 
converged to an inaccurate estimate for the defect location and/ or 
defect size. 
 
The next simulation shows a very similar scenario, with 𝑁	 =
	100, 𝑑	 = 	0.1, 𝑘	 = 	1, 𝑘∗ 	= 	1.1, and 𝑗∗ 	= 	90. Here we have a 
smaller defect located further in the system. Again, we see in 
Figure 18 the 3D rendering of the residual as a function of the 
possible defect locations and defect sizes. Multiple spikes are again 
observed, showing the peaks and valleys of the residual. 
 

 
Figure 18: Graph of the residual as a function of location and defect size 
for the system with 𝑵	 = 	𝟏𝟎𝟎, 𝒅	 = 	𝟎. 𝟏, 𝒌	 = 	𝟏, 𝒌∗ 	= 	𝟏. 𝟏,   and 𝒋∗ 	=
	𝟗𝟎: : (a) Full 3D graph, (b) 2D slice showing the residual as a function of 
possible defect location, and (c) 2D slice showing the residual as a 
function of possible defect size 

These cases show an alternative way of characterizing the defect. 
This is extremely useful especially for cases when the defect is 
located further down the system. However, this approach is 

mathematically tedious and computationally expensive as all 
variables are treated to be symbolic. 
 
 
CONCLUSION 
 
In this paper we studied the problem of imaging the location and 
size of a single defect in the Young’s modulus for a long metal bar 
of length 𝐿  and cross-sectional area 𝐴	 = 	1 . The model was 
idealized as a 1D bar and was shown equivalent to a discrete spring-
mass system. 
 
We proposed a robust algorithm for characterizing one defect in a 
spring-mass system under the action of an impulsive force. In our 
particular numerical example, the setup we used was with a bar of 
length 𝐿	 = 	1  discretized to 𝑁	 = 	100  finite difference points. 
This will resolve only modes up to the model dependent cut-off 
frequency. In fact, with spatial spacing ℎ	 = 	∆𝑥 and wave speed 

𝑐	 = �.%S 	, the model reliably resolves frequencies up to 

 

𝑓C`, ≈
𝑐
4ℎ =

𝑐𝑁
4𝐿. 

 
(In practice one must choose 𝑁 so that fmax exceeds the highest 
physical frequency of interest; the factor 4 is a conservative margin 
to limit numerical dispersion.) 
 
This type of forcing is a good approximation of a regular band 
limited forcing since the high order modes are carrying very little 
energy and contribute insignificantly to the measurement map and 
thus can be neglected. In fact, in our numerical setup for the 𝐿	 =
	1, and 𝑁	 = 	100 we can resolve approximately 50 modes. The 
unresolved modes have amplitude less than 𝑂(1/𝑁	) 	× 	𝛿, i.e., 1% 
of the main vibrational amplitude. We also tested our systems for 
robustness against Gaussian noise of size 𝜖	 ∈ 	 (10%], 10%3). In 
practice, one should assume a noise level 𝜖	 ≈ 	10%3 ⋅ 	𝛿 where 𝛿 
denotes the typical displacement amplitude in the system 
considered (e.g., for example in our numerical setup of 𝐿	 = 	1 bar 
with 𝑁	 = 	100 masses, 𝛿	 ≈ 	10%[). For this level of noise, we 
showed that our method remains robust. 
 
The proposed approach minimizes the discrepancy between the 
analytically computed response map, i.e., vibrations of the first 
mass as a function of the defect location and size and the synthetic 
data map that mimics measurements in a physical setting, i.e., the 
vibrations of the first mass when the system with one defect is 
activated by the impulsive force at the first mass. The approach 
entails a minimization procedure that seems to be sensitive to 
measurement noise. To mitigate the effect of noise, a smoothing 
technique, referred to here as the σ-smooth approach is employed 
to modify the objective functional. This, coupled with multiple 
Monte Carlo runs proved to make this approach a couple of orders 
less sensitive to measurement noise. 
 
The proposed scheme works well against Gaussian noise and 
characterizes well the defect size and location for defects located 
not too close near the right end of the bar. The proposed 
optimization strategy appears to have some difficulties in 
characterizing defects that occur near the other end point of the 
system. This may be due to two factors, namely the quick 
dissipation of the energy in the system due to the assumed damping 
and the highly oscillating behavior of the residual functional. We 
proposed an analytic approach for such cases. Numerical results 
indicate that this approach works in detecting the exact size and 
location of defects located near the right end of the bar but it tends 
to be computationally expensive. An alternative approach, one that 
incorporates in the objective functional measurements from the last 
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mass in the system seems much more elegant and it will be 
considered in forthcoming studies. 
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