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ABSTRACT

A critical issue that affects engineers trying to assess the structural
integrity of various infrastructure, such as metal rods or acoustic
ducts, is the challenge of detecting internal fractures (defects).
Engineers typically rely on audible and visual inspection to detect
these anomalies, as destructive testing is impractical. This study
proposes a robust and non-invasive strategy to characterize such
defects using only a small set of minimal measurements.

Assuming a one-dimensional model, we make use of the
continuous one-dimensional wave equation to model these physical
phenomena and then employ specialized mathematical analysis
tools (the Laplace transform and optimization) to introduce our
defect characterization ideas. In particular, we will focus on the
case of a long rod which is homogeneous throughout except in a
small area where a defect in its Young’s modulus is present. We
will first demonstrate how the problem is equivalent to a spring-
mass vibrational system. Afterwards, we show how our imaging
strategy makes use of the Laplace domain analytic map between
the characteristics of the respective defect and the measurement
data.

More explicitly, we will utilize MATLAB to generate synthetic
data as a computational surrogate for actual physical measurements
in several scenarios with one defect of arbitrary location and
stiffness. Subsequently, we will use this data along with our
analytically developed map (between defect characteristics and
measurements) to construct a residual function which, once
optimized, will reveal the location and magnitude of the stiffness
defect.
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INTRODUCTION

Maintaining the integrity of infrastructure, such as bridges,
drainage, and aerospace components, relies on the ability to
identify hidden defects using non-destructive methods. Current
non-destructive evaluation (NDE) techniques employ various
forms of vibrational analysis due to their cost-effectiveness and
reliability (see for instance Cawley and Adams 1979, Shifrin 2017,
Zhang et al 2018, Peng et al 2022, Zou et al 2000). Specifically,
many methods employ one-dimensional spring-mass analogues
and wave equation models. These solutions are notable for their
intuitive physical representation, analytical versatility (resulting
from the Laplace transform), and especially their straightforward
implementation in various numerical software, such as MATLAB.
In biomechanics and computer graphics, spring-mass networks can
simulate soft-tissue deformation and cloth dynamics in real-time,
sacrificing system continuity for computational speed and
robustness (Dimarogonas 1996). Moreover, acoustic metamaterials
use one-dimensional (1D) spring-mass chains to block specific
sound frequencies, thus creating an acoustically manipulable
system (Palacz and Krawczuk 2002). Even vehicle and vibrational
suspension systems employ a discrete set of springs and masses to
identify and isolate harmful fluctuations arising from dynamic
loads (Dilena and Morassi 2009).

An emerging area of NDE research focuses on treating internal
cracks, or defects, as an extra spring. When measuring certain
values of such systems, the spring associated with the crack
perturbs natural frequencies, thus shifting the poles of a system’s
Laplace- domain output (Rubio et al 2015). Certain studies have
already demonstrated that employing just two low-frequency
measurements can be used to detect a single defect through a
singular formula (Cawley and Adams 1979). Recently, works use
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guided-wave Bayesian methods (Zeng et al 2023) and particle-
swarm optimizers (Grebla et al 2023) to detect multiple and/or
nonlinear defects.

On the other hand, many methods rely on continuous and precise
Laplace-domain data, depend on closed-form inversion (valid for
one or two defects), or struggle to generate an inverse map with
boundary measurements and defect parameters. In reality, sensors
may only monitor discrete time-series data, which is plagued by
noise, and cracks can occur at arbitrary depths with varying
magnitudes. As a result, the challenge of creating a data- driven
imaging strategy that reliably recovers the location and size of a
single defect from minimal, easily measurable data, while
considering noise, remains unsolved.

Despite these advances, one can note that existing approaches face
practical limitations, especially when they are applied to cases
involving noisy boundary measurements.

In this work, we study the inverse problem of locating and
quantifying a localized stiffness defect in a one—dimensional elastic
rod using only a single endpoint displacement trace. The forward
model is the standard 1D longitudinal wave equation discretized by
a lumped spring-mass chain (e.g., in our particular numerical

setup, length L = 1 meter, N = 100 nodes, Ax =% ). The

inverse task is to recover the index j and the local spring constant
k* of a single anomalous element from noisy measurements of the
left-end displacement uy(t) produced by an impulsive initial
velocity.

Our numerical results show the inversion recovers the defect
location exactly (to the discretization cell) and recovers k™ with
relative errors < 0.1% under realistic Gaussian measurement noise
up to ¢ = 107% m. The discrete contrast k* maps directly to a
continuum Young’s modulus in the defective element via Eqer =

‘A « E
%, consequently results for k* € [0.1,5] correspond to % €
0

[0.1, 5] in the continuum model.

The key features of our approach are:

e a hybrid Laplace-domain forward solver that yields
cheap, high-fidelity forward responses used to build a
synthetic measurement map,

e arobust inversion pipeline that combines a coarse per-
index search with a local non-linear refine (Gauss—

ky ks

ks ki

A E R ER L
= = = Ed
i

dy d;

Newton / constrained optimization) and simple
smoothing regularization of the forward data; and

e an extensive validation campaign (Monte Carlo noise
sweeps, contrast sweeps, and sensitivity to parameter
mismatch) that quantifies the practical detection limits.

This work builds on our previous works (Egarguin et al 2020,
Egarguin et al 2022) and attempts to make a step towards
addressing these issues in the context of the problem of
determining the location and size of a defect in the Young’s
modulus of a long rod which is otherwise homogeneous. The said
previous works dealt with defects in an acoustic duct which
translates to defects in the mass of some bodies in a spring-mass
system. Meanwhile, this work focuses on analyzing the defects in
the Young’s modulus in a rod, which is approximated by defective
springs in a 1D spring-mass system. We will start by showing the
quantitative equivalence between a metal homogeneous rod with a
localized defect in its Young’s modulus and a 1D homogeneous
spring-mass system with a defective spring constant. Thus, an
impulsive force at the left end of the rod will result in a longitudinal
wave propagating along the rod and subsequent vibrations being
measured at the left end point. Equivalently, the discrete system
activated by an initial impulse applied at its first mass will generate
vibrations through the entire system. Then, in this discrete setup,
measurements will consist of the resulting vibrations of the first
mass. As shown in (Egarguin et al 2022), through a z —transform
approach one can use the set of discrete time measurements of the
first mass and obtain an approximation of the Laplace transform of
the first mass vibrations (when perceived as a function of time).

We then proceed towards building the analytic map relating the
defective spring constant (defect size) and its location to the
vibrations of the first mass. Then, in the Laplace domain, a residual
functional is proposed measuring the discrepancy between this
analytic map the synthetic measurements data set (i.e., the Laplace
transform of the first mass vibrations). Finally, minimization of this
residual functional determines both the location and magnitude of
the stiffness defect. All of this is achieved with minimal, non-
invasive data, as measurements are only taken from one end of the
system. In the context of a metal rod, our results show how
vibrational data resulting from an impulsive force at one end of the
rod will indicate the position and level of abnormal Young’s
modulus at one point in the rod which in turn offers a prediction for
the position and likelihood of a future crack occurring at that point.

i kjyq kjy2 ky—q ky k1
- - AT AW -~ AW W
= = = = = =
dj dj+1 dy-1 dy

Figure 1: Discrete spring—mass chain model of a 1D bar with a single stiffness defect (high- lighted spring). Each mass represents a segment of the

bar and each spring its local stiffness k;.

Our proposed method shares similarities with previous works that
evaluate vibrational NDE by modeling defects as local compliance
using a 1D spring-mass system combined with Laplace-domain
analysis (Cawley and Adams 1979, Rubio et al 2015). Similar to
Zeng et al. (2023), our method inverts boundary wave
measurements. The method determines defect parameters: the
defect’s position along the system and its severity. Severity is
indicated by the deviation of the spring constant from that of the
homogeneous system. Unlike a Bayesian posterior that updates
with each new observation, our residual minimization function can
be optimized to identify both the size and location of the defect
using only minimal, discrete endpoint measurements. An analytic
inverse-spectral method was employed in (Shifrin 2017) and
closed-form techniques were used in (Rubio et al 2015) to identify
one or two defects from frequency data. In (Egarguin et al 2022)
the authors used the poles of the transfer function to detect one or

two defects with left hand measurements in a system activated by
an impulsive force. The method we propose can handle arbitrary
defect positions in a single-defect scenario with discrete data and
our numerics suggest it is extensible to the case of arbitrary number
of defects. Additionally, unlike forward-only spectral-element
methods (see Palacz and Krawczuk 2002, Krawczuk et al 2006,
Zhang et al 2018, Liu et al 2023) and frequency-shift
reconstructions (Dilena and Morassi 2009), our approach develops
an explicit inverse mapping from endpoint vibrational data to infer
the defective spring constant and its position. In (Egarguin et al
2020) the authors built a similar analytic map relating the defect
characteristics to the measurement data and identify one defect
(size and location) or two defects if a priori information about their
location or sizes is offered. In (Egarguin et al 2022) the authors use
the defect signature on the poles of the transfer function, although
the method proposed there requires continuous spectral data. Both
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of these approaches extend the concept of using a spring-mass
system within a Laplace- domain framework. Notably, while newer
methods employ guided-wave Bayesian inference or particle-
swarm analysis for defect identification (Zeng et al 2023, Grebla et
al 2023), our method is computationally cheap and maintains
accuracy even with noisy and discrete data.

METHODS

This section presents the mathematical framework used to identify
the size and location of defects in otherwise homogeneous
hyperbolic linear systems. More explicitly, we consider two one-
dimensional wave propagation models. The first one models
transverse waves (string with fixed ends) while the second deals
with longitudinal waves (long bar with clamped ends). Each model
contains one defect of unknown size and location (defective
localized string tension and respectively defective localized
Young’s modulus). First, we show how each of these two models
can be equivalently represented by a discrete spring—mass system

where one spring has a defective spring constant. Then we will
develop a new strategy to detect the position and size of the
defective spring constant resulting, through the above equivalence,
in a strategy to detect the defective location and size in the string
tension or the elastic bar’s Young’s modulus, respectively.

We will proceed first to describe the main paradigm in the context
of a discrete spring and mass system.

Discrete Spring-Mass—Damper Chain

We model our structure as a chain of N point masses my, ..., my
connected in series by linear springs and dashpots. Mass m; sits
between springs of stiffness k; (to the left) and k;,.; (to the right),
and dashpots of damping d; and d;,; (see Figure 1). Denote its
displacement by x;(t). Newton’s second law at each interior mass
j = 1,...,N gives (see Egarguin et al 2020, Egarguin et al 2022)

myxy (£) = —kyxy — dyxg + kp(x; — x1) +y6(0)
mx/'(t) = k]-(xj_l - x]-) —djxj + kj+1(xj+1 - xj) forj=2,3,..,N—1

" _
myxy(t) = —kyi1Xpn

where §(t) denotes the Dirac distribution centered at zero. Recall
that §(t) can be heuristically described as the generalized function

with §(t) = 0 for all t # 0 and f_+0:° 8(t) dt = 1. In the previous
system of equations, we also assumed that the system is driven by

"o_ k] k] + kj+1 kj+1
YT T T .
j j j
where fi(t) = y6(t), f, =...= fy = 0 represents  the

impulsive forcing term. In Equation (1) we assumed the convention
that (xo(t) = xy41(t) = 0).

local stiffness at x;

m; = p(x)Ax, k; Ax

In the next two sections, we shall discuss the analogy of transverse
strings (Section 2.2) and heterogenous bars (Section 2.3) to spring-
mass-damper systems (SMDS). Although the discussions in
Section 2.2 and Section 2.3 are very similar since the underlying
equations governing the respective vibration profiles are exactly
the same, we chose to present each topic separately to highlight the
physical difference between the two types of situations we address.
In Section 2.2, we shall show that the tension in a point in the string
can be discretely modelled as a stifthess constant of a spring in an
SMDS. Meanwhile, we show in Section 2.3 how the
proportionality constant between stress and strain in linear elastic

0%u 1 0

atz  po(x) dx

with boundary data given by u(0,t) = u(L,t) = 0 and activated

T
x;j + Xjip1 ——X; + f;
J m Jj+1 m: I f]'

ou

a2 = (rog

B ulx) ou

—dyxy — ky(ey — xy-1)

an impulsive force acting on the first mass with prescribed
amplitude y.

Rearranging, this can be written in the compact tridiagonal form:

forj=1,2,..,N, D

This discrete spring—mass—damper model serves as our reference.
In Section 2.2 and Section 2.3, we will demonstrate that applying
centered finite differences to the continuous 1D wave PDEs (string
and bar) yields exactly these same equations once we set

_ local damping at x;
J = Ax

, fori=1,2,..,N.

media (i.e., the Young’s modulus) translates to a spring stiffness in
an SMDS.

Transverse String and its Spring—Mass—Damper Analogue

We begin with the most general 1D transverse- wave equation
modelling the time- varying vibration profile u in a clamped string
modeled as a one-dimensional segment [0, L], and whose linear
density py(x), tension T'(x), and damping u(x) vary with position:

£oC0) 0t @)

S oy 3 . .
finite difference approximation for a_z we obtain the following

by impulsive initial data, ie. 1(x,0) = 0,u'(x,0) = yd(x) . f;mte dlafierence approximation for the spatial derivative
Sampling at equally spaced points x; = iAx, fori = 0, a(T(x) 5)3
1,...,N+1, (ie, (N + 1)Ax = L), letting p; = po(x;), T; =
T(x), w; = p(x;), and u; = u(x;,t), and applying a forward

d Tivativr — (Ti 4 Ty ) + Tithi—g

—(T = i=1,2,..,N.

oz Tux) o, )2 , =12,
If we letuy’ = ‘il:i and uj = %, the discrete update reads

1 Tytior — Ty + T )w + Tty g

ul{/ — i+1%i+1 ( i L2+1) 1 i%i-1 _&ul{' i = 1, 2’ ...,N. (3)
pi (Ax) i
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with the observation that the fixed end boundary conditions imply
Uy = Upyq = 0.

On the other hand, from Equation (1) we have that the equation of
motion for the i mass x;(t) in a discrete chain of N masses

oot kitkia o ki
i m; i-1 m; i m; i+1

Equations (3) and (4) coincide exactly under the identifications

m; = piAx, k=

Therefore, each string segment of length Ax and density
p; becomes a discrete mass m;, each local tension T; becomes a
spring stiffness constant k; , and the continuous damping p;
becomes the damping coefficient d;. This one-to-one mapping
showcases our defect-imaging strategy, which treats local changes
in T(x) as defective springs in the spring and mass chain. In
particular, a localized modification in the string tension T
corresponds to a defective spring k;- in the chain, enabling us to
detect defect location and severity via spring—mass inversion.

’w 0

P(x)m =a

where we assumed homogeneous Dirichlet boundary conditions
w(0,t) = w(L,t) = 0 and the vibrations generated by an
impulsive initial data, i.e., w(x,0) = 0; w'(x,0) = y§(x). We
recall that as classically defined, the Young’s modulus E (x) is the

(E0 ) %,

my,..
d,..

.,my linked by springs ky,...,ky,1 and dashpots
., dy, assuming that x,(t) = xy,41(t) = 0,is

d; , .
—nTixl-+fj, i=12,..,N. 4)

Ax

Longitudinal Vibration in a Heterogeneous Bar and Its
Spring—Mass Analogue

Consider axial vibrations w(x,t) in a rod of length L whose
density p(x), Young’s modulus E(x), and damping u(x) vary
with position, that satisfies

, di = HIAX

®)

We discretize Equation (5) with x; = iAx, i = 0,...,N+1,
Ax = and by setting p; = p(x;), E; = E(x;), p; = u(x;),

TN+

. . R . and writing w;(t) = w(x;,t) . A centered- difference
proportionality constant between stress and strain in linear elastic a roximati(%n in ;c ( )ives (i, )
media (with stress defined as the internal force per unit area and pp &
strain as the measure of elongation (gradient of the displacement)).

We mention that the Young’s modulus usually encodes the level of
stress accumulation in the media.

i(Ew ) _Eiawipa — (B + Eip)wi + Eiwig

X ~ 2 .
ox x=x; (Ax)
. 17 d?w; ’ dw; . .
Hence, denoting w;' = Wi = the finite-difference update
is
1 Ejy1wipqr — (B + Ejp)w; + Ejw; i
W-”=— +1Wi+1 ( i l+1) i Wi 1_&W1‘,; i=1,...,N, (6)

oo (8x)?

with the observation that the fixed end boundary conditions imply
Ey =Eni1 =0.

On the other hand, from equation (1) we have that the equation of
motion for the i mass x;(t) in a discrete chain of N masses
my,...,my linked by springs ky,...,ky,1 and dashpots

m; = p;Ax, k;

Therefore, each string segment of length Ax and density p;
becomes a discrete mass m;, each local Young’s modulus E;
becomes a spring stiffness constant k;, and the continuous damping
u; becomes the damping coefficient d;. This one-to-one mapping
showcases our defect-imaging strategy, which treats local changes
in E(x) as defective springs in the spring and mass chain. In

Pi
di,...,dy, assuming that xy,(t) = xy.1(t) = 0, is given by
Equation (4). Equations (4) and (6) coincide exactly under the
identifications

E;
= E, di = Hle

particular, a localized drop (or rise) in the bar’s Young’s modulus
Ej+ corresponds to a defective spring k;+ in the chain (highlighted
in Figure 2), enabling us to detect defect location and severity via
spring—mass inversion.

/I\

T 3*

Continuous bar with a localized
Young's modulus [E(x)] defect

ny
Y

AT AT

T

j*

Equivalent spring-mass chain

Figure 2: Left: a continuous bar with a localized Young's-modulus defect at x;- . Right: the equivalent spring—mass chain where the j*" spring has

. E
altered stiffness k; = L
Ax
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Mathematical Framework for Characterizing Defective

Springs in a Spring-mass System

We consider the system in equation (1) first under the

homogeneous assumption and then a system with one defective

spring constant. Thus, for the homogeneous system, i.e., when
X1 +dxy + 2kxy — kx;

xy +dx; + 2kx, — kx; — kxs

x{" +dx + 2kx; — kxj_q — kxjq

m; = 1,d; = d, k; = k, driven by the impulsive force at the
first mass, we have the following mathematical model (Egarguin et
al 2020, Egarguin et al 2022):

Xy_1+dxy_q +2kxy_ 4 —kxy_, —kxy =0

xy +dxy + 2kxy — kxy_

Now, suppose that all constants are equal to 1, except that of the
spring at position j with a spring constant k* # 1. Then the system
becomes

x1 +dx; + 2%, — x,

xy +dxy + 2xy — xy_q

Taking the Laplace transform of the expressions in Equation (8)
plus some algebraic manipulation yields

(s2+ds+2)% — %,
(S2+ds+2)372—371—f3

(s*+ds+(1+ k*));zj'_1 -

(52 +ds + 2)%1\] - fN—l

Letting h = —(s?+ ds +2) and performing some more
algebraic manipulations allow us to write the System (9) into the
matrix form

AX=0»b (10)

where 4 is the tridiagonal matrix given by

o R >
_ S
SN

1 h+1-k"
k*

In Equation (11), the diagonal entries h + 1 — k* occur in the row
numbers j — 1 and j. Meanwhile the right-hand side vector b is
givenby b = [—y 0...0]T and the unknown vector X consists of
the responses X;, i = 1,2,..,N of each mass to the excitation
force in the Laplace domain.

1

xg +dxy + 2%, —x; — X3

XLy +dxjg + (A +k)x_ — x5 —
X/ +dx + (1 +Kk)x; — k™1 — xj41

n r
AN-1 FdXy_1 + 22Xy — Xy — Xy

(s2+ds+ (A +k))% —k*%_y

(s2+ds+2)Fy_q — Xy_p — Xn

=y6(t)
=0
=0 Q]
=0
=y6(t)
=0
k*Xj =0 g
o ®)
0
0
14
0
o —k*'% =0
-2
*]N ~ ] 3 . (9)
j-1— %41 =0
0
=0
k* an
h+1-k* 1
1 h 1
1 h
The coefficient matrix A can further be manipulated and written in
the form A=A, + P where Ay =
h 1
1 h 1
0 1 h 1 ; is the tridiagonal N X N matrix
1 h 1
1 h

obtained by taking the Laplace transform of the homogeneous
(nondefective) System (7) and P; is the sparse N X N matrix
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whose only four nonzero entries occur at j — 15¢ and j™ rows of
the j — 15t and j™ columns. The results from (Hu and O’Connell
1996) suggest that since the diagonal entries h of 4; involving the
Laplace domain variable s > 0 and the damping coefficient d > 0
satisfy

h=—(s2+ ds+2)< -2

then A, is invertible with inverse given explicitly by
R=A4;"=(Rup)
where following Hu’s notations,

_cosh[(N+1—|p—m[)A] — cosh[(N +1—m —p)]]
me 2 sinh Asinh(N + 1)1

fi + Ri,j—l ((1 - k*)fj—l + (k* - l)f]) + Ri,j ((k* - 1)55]_1 + (1 - k*)fj) = _Ri,l)/'

In particular, taking i = 1 in Equation (12) gives us the following
expression for the Laplace domain response X, of the first mass to
the impulse force in terms of X;_; and X;

%,(s) = —YRi1 — 1- k*)(Rl,j—l - R1,j) fj—l(s) -(1- k*)(RL]- - R1,j—1)37j(5)-

Meanwhile, separately using i = j — 1 and i = j in Equation (12)
and algebraically manipulating the resulting equations give us the
following system obeyed by the responses ¥;_; and X; of the
masses immediately adjacent to the defective spring

(1 - k*)(Rj,j—l - R},])f]—l + (1 + (R]'] - R],]—l)(1 - k*)) f] — _ij,l
(1 +(Rj-1jo1 = Rjorj) (1 = k*)) %y + (R

Solving the preceding system of linear equations in the unknowns
¥j_, and X; gives

—Ri_yj_)( — k)% =Y Rma

0
and A satisfies h = —2coshA . Thus, System (10) can be
expanded as

Ax=b
R(Ay +P)x =Rb
x+ RP;x =Rb

Note that since P; is sparse, consisting only of four nonzero entries,
the matrix product RP;x can easily be computed. In fact, for any
i=1,2,...,N we have

(12)

(13)

(14)

_ _)/R]JV + ]/Rj_1,16

x._l =

J GU —-FV
, 15
o _YRuU-YRuF =
J GU —-FV

where F = (1 - k*)(R]"]'_l - Rj,]),

G=1 + (R],] - R],]—l)(1 - k*),

U=1+ (Rj—l,j—l - R]—l,j)(l - k*) and

V= (R]-_L]- - R]-_L]-_l)(l — k™). Using the equations in System
(15) into Equation (13) yields an explicit expression for the
response of the first system as a function of the parameters j and
k* representing the defect location and defect size, respectively.
Ideally, this analytic expression for ¥; will be compared to the data
obtained by directly measuring the Laplace domain response of the
first mass in a physical system with a defective spring. In this paper
however, we instead compare ¥;to a synthetic data obtained by
independently solving System (9). This process is discussed in the
following subsection.

The Optimization Algorithm

The proposed method identifies the defective spring in the system
whose first mass is excited by the impulse force §. This is done by
minimizing the discrepancy between the analytically computed
response of the first mass and the noisy synthetic data that mimics
measurements from a physical setting. Let X anaytic be the
analytically computed response, defined as ¥; in Equation (13)
with System (15), of the first mass. Since we assume that our
scheme has no access to the location and size of the defect, we
consider ¥ apalytic as a function of the location j of the defect, the
size k of the defect, and the Laplace variable s. Meanwhile, we let
X1 synthetic denote the synthetic data that mimic perfect real-life
measurements in the Laplace domain. To simulate measurement
uncertainty, a Gaussian noise € is added to the synthetic data. The
measurement noise is quantified by its relative size with the
synthetic data. The objective function to be minimized is
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fU, k) =log <J;+Oo [fl,analytic(j: k,s)— (fl,synthetic (s) + 6(5))]2 ds),

which is the logarithm of the squared L?- norm of the residual. The
logarithm ensures that the optimizer (fmincon) avoids premature
termination due to very small jumps in the objective function
values between iterations. The introduction of the noise function
€ makes this approach better reflect the conditions of practical
defect detection, where the measurements are inevitably corrupted
by noise.

In practice we run the local optimizer (MATLAB fmincon)
independently for each candidate defect index j € {2,..., N} and
pick the (j, k) pair with minimal residual. This exhaustive per
index procedure reduces the optimizer’s sensitivity to local minima
in the variable k and keeps the inversion computationally cheap
(by just performing one forward solve per j). The optimizer
employs gradient-based methods to search for a local minimum of
a user-defined objective function, subject to linear and nonlinear
constraints, as well as bound restrictions. Because it is a local

minimizes the residual. This process is repeated for all j €
{2,...,N }, and the pair (j, k) that produces the minimum value of
the objective function is selected as the location and estimated size
of the defect.

RESULTS AND DISCUSSION

In this section, we present the defect characterization scheme that
aims to find the location and size of the single defective spring in a
system of arbitrary length. All computations are performed on a
nondimensional 1D chain of length L = 1 with N = 100 cells

1 . . .
and Ax = " For convenience, we set the nondimensional cross-
section A = 1 and the nominal mass and stiffness per cell to

m; = 1,k = 1. To map results to physical units, one can choose

a physical cross-section Ay, density p and baseline Young’s

. . . Ly
solver, its success depends strongly on the smoothness of the ~ modulus Eo. The physical cell length is Ax,pys ===, and
objective landscape and the choice of initial guess. For each
candidate j, fmincon is executed to estimate the optimal k that

E;A
phys _ phys _ “i’phys
m; - pAphysAxphySr ki = Ax .
phys
Hence the conversion factors are Mo = pAppysAXppys and

EoA Lo
krer = 27215 and physical time/frequency follow

Axphys

tPhys — ¢ %’ and PV = o @,
ref Mye f
where t,w denote the time and frequency, respectively and 1 Response & of the First Mass
A . E . . . . ' ‘ ' ‘
Dref — ZXphys with ¢ = \/1, so a nondimensional time unit
krer ¢ 4 0.9 1
equals the travel time across one cell. 08 |
We illustrate the effect of measurement noise to this approach 07 1
necessitating the need for the introduction of what we call the o- 06 i
smooth approach. This modification in the objective function, -
coupled with a Monte Carlo run, mitigates the effect of the noise to 5 08 |
the system. The section ends with an illustration of a more analytic 04 1
approach that can be an alternative for scenarios when the defect is 03 | |
located near the end of the system. '
02 -
A Noise-free Simulation 01k |
In this section, we demonstrate that the good performance of the
proposed optimization procedure for noise- free data. Figure 3 % 20 40 60 80 100

shows the synthetic data generated with the following parameters:
number of masses N = 100, damping coefficient d = 0.1,
impulse intensity y = 1, uniform spring constant k = 1, defect
location jiue = 40, and defect spring constant k* = 1.3. In
other words, the system contains a single defective spring in
position jiue = 40 with stiffness k* = 1.3, while all other
springs have k = 1.

s

Figure 3: Graph of Synthetic Data for the system with parameters N =
100,d = 0.1,y = 1,j = 40,and k* = 1.3.

To identify the defect, the optimization routine fmincon was
executed 99 times, once for each possible location of the defect j €
{2,...,1003}. For each j, the optimizer solved for the optimal
defect size k that minimizes the objective function f(j, k). Figure
4 shows the corresponding minimal residual values with respect to
k, calculated as 107U for each possible value of j. Here, the
x —axis corresponds to the possible defect locations j, while the

y —axis represents the residual magnitude 107 (k5) , where k; is
the minimizer of the objective function for each fixed value of j.

Volume No. 19 | Issue No. 01 | 2026

39

SciEngg]



Residual as a Function of Possible Defect Location
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Figure 4: Residual as a function of the possible defect location.

The results indicate that the smallest residual occurs atj = 40,
matching the true defect location. The corresponding computed
defect stiffness is k* = 1.299848, which is in excellent agreement

) ) T
with the true value k* = 1.3. The relative error is lc‘m;ciﬁl ~
1.17 X 10™*, demonstrating high accuracy. This suggests that
given a perfect set of measurement values of the system response,
the proposed method yields highly reliable results. The next
subsection shows the effect of the introduction of various noise

levels to the measurements.

Effect of Gaussian Noise

Modern laboratory Laser Doppler Vibrometers (LDV) achieve sub-
nanometer to picometer- class displacement noise floors depending
on bandwidth and surface reflectivity; assuming a conservative
axial displacement noise of order 107 m for our experimental
bandwidth is realistic (see Ofv-5000 2025, Rothberg et al 2017).
Thus, we test our algorithm for sensitivity to noise of magnitude
within the threshold of modern LDVs.

Figure 5 and Figure 6 show the effect of the Gaussian noise € on
the accuracy of defect detection. We again consider the defective
system with the same parameters as the ones used in Section 3.1.

Relative Error in the Location
as a function of Noise Size
T T Y

10710+ 4

Relative Error
=
B
.
L

1020 + 4

1025 + 4

108 107 10° 107 10 107 107
Size of noise relative to Data
Figure 5: Relative error in the estimate for the defect location as a
function of noise level for the system with parameters N = 100,d =
0.1,y = 1,j = 40,and k* = 1.3.

Relative Error in the Defect Size
. asafunction of Noise Size

102}

Relative Error

10

10°°

10®

J

108 107 10 10 10 10 102

Size of noise relative to Data
Figure 6: Relative error in the estimate for the defect size as a function
of noise level for the system with parameters N = 100,d = 0.1,y =
1,j = 40,and k* = 1.3.

Figure 5 plots the relative error in the predicted defect location as
a function of the relative size of €. For € of magnitude 10~8,1077,
and 107° relative to the synthetic data, the predicted defect
location matches the true location exactly. However, when the
noise level is at 1073, the relative error in the predicted location
increases to approximately 5%, and it continues to grow as the
noise level increases. This suggests a noise level threshold near of
107% beyond which location detection degrades significantly.
Meanwhile, Figure 6 shows the relative error in computed defect
size as a function of noise level. At noise level 1075, the relative
error in the estimated defect size is about 9.30%, whereas for e =
107, the error is on the order of 10~°. This confirms that 107°
serves as a practical noise level threshold for accurate detection.
Notably, this noise level is still well within the capabilities of
modern defect detection systems, which can achieve precision up
to 10712,

In the next subsection, we present a modification of the basic
optimization algorithm that mitigates the effect of the measurement
noise. We shall see that this approach improves the noise level
threshold by some orders.

The o —smooth Approach

To further improve robustness against noise, we propose a variant
of the optimization procedure, which we refer to as the o-smooth
approach. The framework remains the same: we begin with the
synthetic data Xy gynhetic, dd Gaussian noise € of prescribed size,
and then minimize the residual between the analytic and measured
responses. The key modification is the introduction of a random
perturbation to the defect size parameter k in the objective
function.

In the original formulation, the optimizer solves directly for k. In
the o-smooth approach, however, the unknown k is replaced by

k+4

where § is a random perturbation drawn from a normal distribution
with mean zero and variance o2, i.e., § ~ N (0,0?). Thus, instead
of estimating a single deterministic value of k, the method
effectively searches for an interval [k — A,k + A] of admissible
values. This allows the solution to remain stable under noisy
conditions, since small shifts in k within this interval still produce
consistent results.

40
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To account for randomness in §, we generate Ng independent
samples {61-}?]:51 from the distribution above. For each §;, we
evaluate the modified objective function

1

£, k; 8;) = log ( f - [%1anatytic Uk + 81, 5) = (Fusynthetic (5) + e(s))]z)E

The o-smooth objective is then defined as the average:

Ns
1
FGK) = 3 ) 1 ks 80
i=1

Minimization is performed on F with respect to k, while j is
treated as a discrete variable as before. When 0 = 0, the method
reduces to the deterministic formulation. For ¢ > 0, the
perturbation introduces robustness by mitigating the effect of
Gaussian noise in the measured data. In practice, we found that
setting ¢ = 10™* and averaging over N5 ~ 50 samples is
sufficient to stabilize the results.

Note that Monte Carlo runs were also employed in the 6-smooth
approach to account for the presence of noise and the stochastic
nature of the defect detection problem. By repeating the
optimization procedure over multiple randomized noise
realizations, we were able to obtain statistically reliable estimates
of the residual functional and the optimizer’s performance. This
averaging process reduces sensitivity to a single noise instance and
highlights the overall trend of defect detectability across different
locations. The final estimates for the defect location and defect size
are taken to be the median of the respective estimates from each
Monte Carlo run.

A Simulation Employing the c-smooth Approach

To assess the performance of the 6-smooth approach, we compared
its results against the deterministic method under noisy conditions.
In particular, we tested the method by considering the defective
system with the same parameters as in Section 3.2 but with noise
of size 5 x 1075, The results are shown in Figure 7.

Without regularization (i.e., using the deterministic approach), the
relative error in defect location was approximately 2.5%, while the
relative error in the computed defect size was about 5.75%. These
results indicate noticeable degradation in accuracy under noise.

In contrast, when the c-smooth approach with Ns = 50 was
applied to 100 Monte Carlo runs with each run having a different
noise function, the performance improved significantly. The
resulting estimates for the defect location and defect size for the
simulation described above are plotted in Figure 7 and Figure 8,
repsectively. Recall that the final estimates for the defect location
and defect size were taken to be the median of the respective
estimates from all the Monte Carlo runs. The median was chosen
as multiple runs suggest that the optimization have the tendency to
produce outlier estimates. The median provides a more robust
measure of central tendency in the presence of these outliers or
even skewed distributions of the results. The presence of outliers
in the current simulation can be observed in Figure 7 and Figure 8.
The relative error in defect location decreased from 2.5% to 0%,
meaning the defect was identified exactly. Similarly, the relative
error in the computed defect size dropped from 5.75% to
1.8 X 107* , demonstrating several orders of magnitude
improvement. These results suggest that the proposed c-smooth
approach is effective in mitigating the influence of noise. Figure 7
illustrates the defect location identified in each simulation run,
while Figure 8 shows the corresponding results for the defect size.
In both figures, we can observe that a significant portion of the
Monte Carlo runs produced estimates that are substantially

different from the true defect location and true defect size. This
shows that indeed, measurement noise significantly affects the
defect characterization scheme as the skew some of the
optimization results. However, the use of the median across all
Monte Carlo runs mitigated the effect of the outliers and skewed
results.
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Figure 7: Estimates for the defect location from 100 Monte Carlo runs of

the o-smooth Approach.
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Figure 8: Estimates for the defect size from 100 Monte Carlo Runs o-
smooth Approach.

Multiple Simulation Runs

In this subsection, we investigate the limits of the robustness of -
smooth approach. We reuse the 6-smooth approach with Ns = 50
draws across 100 Monte Carlo runs for defective systems with
varying defect location and defect sizes. The common parameters
among these systems are the uniform spring constant k = 1,
damping coefficient d = 0.1, and number of masses N = 100.
In all the experiments, the noise level was setto 5 x 107*%.

Defect Detection for Fixed Defect Size and Varying Location

First, we employ the 6-smooth approach to characterize the defect
in systems with a defective spring of stiffness k* = 1.30 but
varying locations j across the chain. Figure 9 shows the estimated
defect size as a function of the true defect location. For most defect
locations, the optimizer is able to recover the defect size accurately,
yielding values close to k* = 1.30. Meanwhile, Figure 10 shows
the relative error in the defect size estimates as a function of the
true defect location. One can observe from Figure 10 that beginning
around j = 79, the optimizer experiences increasing difficulty in
estimating the defect size, resulting in unstable or significantly
overestimated values.We observe that up toj = 78, the relative
error remains below the 5% threshold. Beyond this point, however,
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the relative error grows rapidly, indicating a degradation in the
scheme’s accuracy when the defect is located near the end of the
system.

Defect Size Estimates as a Function of Actual Defect Location
with Defect Size Fixed atk* = 1.30
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Figure 9: Estimate for the Defect Size vs Actual Defect Location for the
Simulation in Section 3.5.1.

Defect Location Estimates as a Function of Actual Defect Location
with Defect Size Fixed atk*=1.30
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Figure 10: Relative Error in the Defect Size Estimate vs Actual Defect
Location for the Simulation in Section 3.5.1.

Figure 11 shows the estimated defect location versus the true defect
location. The optimizer performs very well in this task, producing
estimates that closely follow the diagonal line (perfect agreement).
The corresponding relative error, shown in Figure 12, confirms
this: the location is always predicted within at most 2.33% error,
which corresponds to a maximum of two positions away from the
true defect location.

Defect Location Estimates as a Function of Actual Defect Location
with Defect Size Fixed atk* = 1.30
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Figure 11: Estimate for the Defect Location vs Actual Defect Location for
the Simulation in Section 3.5.1.
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Figure 12: Relative Error in the Defect Location Estimate vs Actual
Defect Location for the Simulation in Section 3.5.1.

In summary, for a fixed defect size k* = 1.30, the optimizer
reliably identifies the defect location across the entire domain, but
struggles to estimate the defect size accurately once the defect is
positioned near the end of the system. This makes sense from the
physical point of view as the exciting force dissipates fast as it
travels across the chain. Hence, the effect of the defect to the
vibrations in the first mass becomes less and less as the defect’s
location becomes close to the other end. One way to handle such
cases is to incorporate measurements from the last mass in the
optimization. This will be explored in upcoming studies.

Defect Detection for Fixed Location and Varying Defect Size
Now, we fix the defect location at j = 40 and vary the defect size
k*. Figure 13 shows the estimated defect size as a function of the
true defect size. The estimates align almost perfectly with the
diagonal, indicating that the scheme is highly successful in
recovering the true defect size across the tested range. Figure 14
which shows the corresponding relative error in the defect size
estimate, further confirms this observation. It shows that the
maximum etrror is just around 2.77%.
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Defect Size Estimates as a Function of Actual Defect Size
with Defect Location Fixed atj =40
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Figure 13: Estimate for the Defect Size vs Actual Defect Location for the
Simulation in Section 3.5.2.
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Figure 14: Relative Error in the Defect Size Estimate vs Actual Defect
Location for the Simulation in Section 3.5.2.

Figure 15 shows the estimated defect location as a function of the
true defect size. Here, the estimates remain constant at the true
defect location j = 40. Figure 16 displays the relative error in the
defect location estimate as a function of actual defect size. From
there, one can observe that the defect locations are always exactly
calculated.

Defect Location Estimates as a Function of Actual Defect Size
with Defect Location Fixed atj =40
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Figure 15: Estimate for the Defect Location vs Actual Defect Location for
the Simulation in Section 3.5.2.

Defect Location Estimates as a Function of Actual Defect Size
with Defect Location Fixed atj =40
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Figure 16: Relative Error in the Defect Location Estimate vs Actual
Defect Location for the Simulation in Section 3.5.2.

These multi-case simulations show that the defect characterization
scheme utilizing several Monte Carlo runs of the o-smooth
approach works well with most systems of various defect locations
and defect sizes even when the measurement data are tainted with
noise of size 5 X 107*. The exemptions are the cases when the
defect is located near the end of the system. To address these cases,
we mentioned a possible extension of the current approach which
incorporates the measurements from the other end of the system.
Another approach, albeit more mathematically involved and
computationally expensive is to simply plot the residual as
symbolic functions of j and k. This approach is illustrated in the
next subsection.

An Analytic Approach: Sketching the Graph of the Residual
Function

To address the cases when the defect is located near the end of the
system, we employ a purely analytic approach. This time, we
treated all quantities as symbolic functions and directly evaluated
the residual

fU, k) =log <J;+OO [fl,analytic(]’: k,s)— (fl,synthetic (s) + 6(5))]2 ds) )

as a function of the possible defect locations j and defect sizes k.
For these experiments, we introduced a noise of magnitude
5 X 10™*. By evaluating f (j, k) across a range of defect
locations and defect magnitudes and plotting the results as a three-
dimensional surface, we can visually identify the location and size
of the defect.

First, we consider the case of a system with the following
parameters: N = 100,d = 0.1,k = 1, k* = 13,j* = 85.
The residual 107U is plotted in Figure 17. Here, we see spikes in
the surface, indicating the extreme values of the residuals. Two
dimensional slices of this surface are shown in Figure 18 and
Figure 19, indicating that the global minima indeed occur atj =
85and k = 1.3.

Volume No. 19 | Issue No. 01 | 2026

43

SciEngg]



and defect size

. o
2 40
20
Possible Defect Size ()
Possible Defect Location

(a)

2 s s
Possible Defect Size
(¢)

Possible Defect Location

Figure 17: Graphs of the residual as a function of location and defect
size in the system with N = 100,d = 0.1,k = 1,k = 1.3,j = 85:
(a) Full 3D graph, (b) 2D slice showing the residual as a function of
possible defect location, and (c) 2D slice showing the residual as a
function of possible defect size

These plots also indicate why the optimization routine employing
fmincon is having some difficulties in characterizing the defect.
The frequent oscillations of the residual function create multiple
local minima. The MATLAB fmincon, being a local solver might
had been trapped in one of these local minima and hence,
converged to an inaccurate estimate for the defect location and/ or
defect size.

The next simulation shows a very similar scenario, with N =
100,d = 0.1,k = 1,k* = 1.1,and j* = 90. Here we have a
smaller defect located further in the system. Again, we see in
Figure 18 the 3D rendering of the residual as a function of the
possible defect locations and defect sizes. Multiple spikes are again
observed, showing the peaks and valleys of the residual.

Residual as a function of location and defect size
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Possible Defect Location (C)

Figure 18: Graph of the residual as a function of location and defect size
for the system with N = 100,d = 0.1,k = 1,k* = 1.1, and j* =
90: : (a) Full 3D graph, (b) 2D slice showing the residual as a function of
possible defect location, and (c) 2D slice showing the residual as a
function of possible defect size

These cases show an alternative way of characterizing the defect.
This is extremely useful especially for cases when the defect is
located further down the system. However, this approach is

mathematically tedious and computationally expensive as all
variables are treated to be symbolic.

CONCLUSION

In this paper we studied the problem of imaging the location and
size of a single defect in the Young’s modulus for a long metal bar
of length L and cross-sectional area A = 1. The model was
idealized as a 1D bar and was shown equivalent to a discrete spring-
mass system.

We proposed a robust algorithm for characterizing one defect in a
spring-mass system under the action of an impulsive force. In our
particular numerical example, the setup we used was with a bar of
length L = 1 discretized to N = 100 finite difference points.
This will resolve only modes up to the model dependent cut-off
frequency. In fact, with spatial spacing h = Ax and wave speed

c = \/%, the model reliably resolves frequencies up to

f c ¢N
mex " gp AL

(In practice one must choose N so that fimax exceeds the highest
physical frequency of interest; the factor 4 is a conservative margin
to limit numerical dispersion.)

This type of forcing is a good approximation of a regular band
limited forcing since the high order modes are carrying very little
energy and contribute insignificantly to the measurement map and
thus can be neglected. In fact, in our numerical setup for the L =
1, and N = 100 we can resolve approximately 50 modes. The
unresolved modes have amplitude less than O(1/N ) X §,i.e., 1%
of the main vibrational amplitude. We also tested our systems for
robustness against Gaussian noise of size € € (107%,1072). In
practice, one should assume a noise level € ~ 1072 - § where §
denotes the typical displacement amplitude in the system
considered (e.g., for example in our numerical setup of L = 1 bar
with N = 100 masses, § ~ 10~%). For this level of noise, we
showed that our method remains robust.

The proposed approach minimizes the discrepancy between the
analytically computed response map, i.e., vibrations of the first
mass as a function of the defect location and size and the synthetic
data map that mimics measurements in a physical setting, i.e., the
vibrations of the first mass when the system with one defect is
activated by the impulsive force at the first mass. The approach
entails a minimization procedure that seems to be sensitive to
measurement noise. To mitigate the effect of noise, a smoothing
technique, referred to here as the 6-smooth approach is employed
to modify the objective functional. This, coupled with multiple
Monte Carlo runs proved to make this approach a couple of orders
less sensitive to measurement noise.

The proposed scheme works well against Gaussian noise and
characterizes well the defect size and location for defects located
not too close near the right end of the bar. The proposed
optimization strategy appears to have some difficulties in
characterizing defects that occur near the other end point of the
system. This may be due to two factors, namely the quick
dissipation of the energy in the system due to the assumed damping
and the highly oscillating behavior of the residual functional. We
proposed an analytic approach for such cases. Numerical results
indicate that this approach works in detecting the exact size and
location of defects located near the right end of the bar but it tends
to be computationally expensive. An alternative approach, one that
incorporates in the objective functional measurements from the last
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mass in the system seems much more elegant and it will be
considered in forthcoming studies.
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